Current File : //usr/local/lib64/python3.6/site-packages/pandas/tests/io/test_gbq.py
from contextlib import ExitStack as does_not_raise
from datetime import datetime
import os
import platform
import random
import string

import numpy as np
import pytest
import pytz

import pandas as pd
from pandas import DataFrame

api_exceptions = pytest.importorskip("google.api_core.exceptions")
bigquery = pytest.importorskip("google.cloud.bigquery")
service_account = pytest.importorskip("google.oauth2.service_account")
pandas_gbq = pytest.importorskip("pandas_gbq")

PROJECT_ID = None
PRIVATE_KEY_JSON_PATH = None
PRIVATE_KEY_JSON_CONTENTS = None

VERSION = platform.python_version()


def _skip_if_no_project_id():
    if not _get_project_id():
        pytest.skip("Cannot run integration tests without a project id")


def _skip_if_no_private_key_path():
    if not _get_private_key_path():
        pytest.skip("Cannot run integration tests without a private key json file path")


def _in_travis_environment():
    return "TRAVIS_BUILD_DIR" in os.environ and "GBQ_PROJECT_ID" in os.environ


def _get_project_id():
    if _in_travis_environment():
        return os.environ.get("GBQ_PROJECT_ID")
    return PROJECT_ID or os.environ.get("GBQ_PROJECT_ID")


def _get_private_key_path():
    if _in_travis_environment():
        return os.path.join(
            *[os.environ.get("TRAVIS_BUILD_DIR"), "ci", "travis_gbq.json"]
        )

    private_key_path = PRIVATE_KEY_JSON_PATH
    if not private_key_path:
        private_key_path = os.environ.get("GBQ_GOOGLE_APPLICATION_CREDENTIALS")
    return private_key_path


def _get_credentials():
    private_key_path = _get_private_key_path()
    if private_key_path:
        return service_account.Credentials.from_service_account_file(private_key_path)


def _get_client():
    project_id = _get_project_id()
    credentials = _get_credentials()
    return bigquery.Client(project=project_id, credentials=credentials)


def generate_rand_str(length: int = 10) -> str:
    return "".join(random.choices(string.ascii_lowercase, k=length))


def make_mixed_dataframe_v2(test_size):
    # create df to test for all BQ datatypes except RECORD
    bools = np.random.randint(2, size=(1, test_size)).astype(bool)
    flts = np.random.randn(1, test_size)
    ints = np.random.randint(1, 10, size=(1, test_size))
    strs = np.random.randint(1, 10, size=(1, test_size)).astype(str)
    times = [datetime.now(pytz.timezone("US/Arizona")) for t in range(test_size)]
    return DataFrame(
        {
            "bools": bools[0],
            "flts": flts[0],
            "ints": ints[0],
            "strs": strs[0],
            "times": times[0],
        },
        index=range(test_size),
    )


def test_read_gbq_without_deprecated_kwargs(monkeypatch):
    captured_kwargs = {}

    def mock_read_gbq(sql, **kwargs):
        captured_kwargs.update(kwargs)
        return DataFrame([[1.0]])

    monkeypatch.setattr("pandas_gbq.read_gbq", mock_read_gbq)
    pd.read_gbq("SELECT 1")

    assert "verbose" not in captured_kwargs
    assert "private_key" not in captured_kwargs


def test_read_gbq_with_new_kwargs(monkeypatch):
    captured_kwargs = {}

    def mock_read_gbq(sql, **kwargs):
        captured_kwargs.update(kwargs)
        return DataFrame([[1.0]])

    monkeypatch.setattr("pandas_gbq.read_gbq", mock_read_gbq)
    pd.read_gbq("SELECT 1", use_bqstorage_api=True, max_results=1)

    assert captured_kwargs["use_bqstorage_api"]
    assert captured_kwargs["max_results"]


def test_read_gbq_without_new_kwargs(monkeypatch):
    captured_kwargs = {}

    def mock_read_gbq(sql, **kwargs):
        captured_kwargs.update(kwargs)
        return DataFrame([[1.0]])

    monkeypatch.setattr("pandas_gbq.read_gbq", mock_read_gbq)
    pd.read_gbq("SELECT 1")

    assert "use_bqstorage_api" not in captured_kwargs
    assert "max_results" not in captured_kwargs


@pytest.mark.parametrize("progress_bar", [None, "foo"])
def test_read_gbq_progress_bar_type_kwarg(monkeypatch, progress_bar):
    # GH 29857
    captured_kwargs = {}

    def mock_read_gbq(sql, **kwargs):
        captured_kwargs.update(kwargs)
        return DataFrame([[1.0]])

    monkeypatch.setattr("pandas_gbq.read_gbq", mock_read_gbq)
    pd.read_gbq("SELECT 1", progress_bar_type=progress_bar)
    assert "progress_bar_type" in captured_kwargs


@pytest.mark.single
class TestToGBQIntegrationWithServiceAccountKeyPath:
    @pytest.fixture()
    def gbq_dataset(self):
        # Setup Dataset
        _skip_if_no_project_id()
        _skip_if_no_private_key_path()

        dataset_id = "pydata_pandas_bq_testing_" + generate_rand_str()

        self.client = _get_client()
        self.dataset = self.client.dataset(dataset_id)

        # Create the dataset
        self.client.create_dataset(bigquery.Dataset(self.dataset))

        table_name = generate_rand_str()
        destination_table = f"{dataset_id}.{table_name}"
        yield destination_table

        # Teardown Dataset
        self.client.delete_dataset(self.dataset, delete_contents=True)

    def test_roundtrip(self, gbq_dataset):
        destination_table = gbq_dataset

        test_size = 20001
        df = make_mixed_dataframe_v2(test_size)

        df.to_gbq(
            destination_table,
            _get_project_id(),
            chunksize=None,
            credentials=_get_credentials(),
        )

        result = pd.read_gbq(
            f"SELECT COUNT(*) AS num_rows FROM {destination_table}",
            project_id=_get_project_id(),
            credentials=_get_credentials(),
            dialect="standard",
        )
        assert result["num_rows"][0] == test_size

    @pytest.mark.parametrize(
        "if_exists, expected_num_rows, expectation",
        [
            ("append", 300, does_not_raise()),
            ("fail", 200, pytest.raises(pandas_gbq.gbq.TableCreationError)),
            ("replace", 100, does_not_raise()),
        ],
    )
    def test_gbq_if_exists(
        self, if_exists, expected_num_rows, expectation, gbq_dataset
    ):
        # GH 29598
        destination_table = gbq_dataset

        test_size = 200
        df = make_mixed_dataframe_v2(test_size)

        df.to_gbq(
            destination_table,
            _get_project_id(),
            chunksize=None,
            credentials=_get_credentials(),
        )

        with expectation:
            df.iloc[:100].to_gbq(
                destination_table,
                _get_project_id(),
                if_exists=if_exists,
                chunksize=None,
                credentials=_get_credentials(),
            )

        result = pd.read_gbq(
            f"SELECT COUNT(*) AS num_rows FROM {destination_table}",
            project_id=_get_project_id(),
            credentials=_get_credentials(),
            dialect="standard",
        )
        assert result["num_rows"][0] == expected_num_rows