Current File : //usr/local/lib64/python3.6/site-packages/pandas/tests/io/parser/test_network.py
"""
Tests parsers ability to read and parse non-local files
and hence require a network connection to be read.
"""
from io import BytesIO, StringIO
import logging

import numpy as np
import pytest

import pandas.util._test_decorators as td

from pandas import DataFrame
import pandas._testing as tm

from pandas.io.feather_format import read_feather
from pandas.io.parsers import read_csv


@pytest.mark.network
@pytest.mark.parametrize(
    "compress_type, extension",
    [("gzip", ".gz"), ("bz2", ".bz2"), ("zip", ".zip"), ("xz", ".xz")],
)
@pytest.mark.parametrize("mode", ["explicit", "infer"])
@pytest.mark.parametrize("engine", ["python", "c"])
def test_compressed_urls(salaries_table, compress_type, extension, mode, engine):
    check_compressed_urls(salaries_table, compress_type, extension, mode, engine)


@tm.network
def check_compressed_urls(salaries_table, compression, extension, mode, engine):
    # test reading compressed urls with various engines and
    # extension inference
    base_url = (
        "https://github.com/pandas-dev/pandas/raw/master/"
        "pandas/tests/io/parser/data/salaries.csv"
    )

    url = base_url + extension

    if mode != "explicit":
        compression = mode

    url_table = read_csv(url, sep="\t", compression=compression, engine=engine)
    tm.assert_frame_equal(url_table, salaries_table)


@pytest.fixture
def tips_df(datapath):
    """DataFrame with the tips dataset."""
    return read_csv(datapath("io", "data", "csv", "tips.csv"))


@pytest.mark.usefixtures("s3_resource")
@td.skip_if_not_us_locale()
class TestS3:
    @td.skip_if_no("s3fs")
    def test_parse_public_s3_bucket(self, tips_df):

        # more of an integration test due to the not-public contents portion
        # can probably mock this though.
        for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
            df = read_csv("s3://pandas-test/tips.csv" + ext, compression=comp)
            assert isinstance(df, DataFrame)
            assert not df.empty
            tm.assert_frame_equal(df, tips_df)

        # Read public file from bucket with not-public contents
        df = read_csv("s3://cant_get_it/tips.csv")
        assert isinstance(df, DataFrame)
        assert not df.empty
        tm.assert_frame_equal(df, tips_df)

    def test_parse_public_s3n_bucket(self, tips_df):

        # Read from AWS s3 as "s3n" URL
        df = read_csv("s3n://pandas-test/tips.csv", nrows=10)
        assert isinstance(df, DataFrame)
        assert not df.empty
        tm.assert_frame_equal(tips_df.iloc[:10], df)

    def test_parse_public_s3a_bucket(self, tips_df):
        # Read from AWS s3 as "s3a" URL
        df = read_csv("s3a://pandas-test/tips.csv", nrows=10)
        assert isinstance(df, DataFrame)
        assert not df.empty
        tm.assert_frame_equal(tips_df.iloc[:10], df)

    def test_parse_public_s3_bucket_nrows(self, tips_df):
        for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
            df = read_csv("s3://pandas-test/tips.csv" + ext, nrows=10, compression=comp)
            assert isinstance(df, DataFrame)
            assert not df.empty
            tm.assert_frame_equal(tips_df.iloc[:10], df)

    def test_parse_public_s3_bucket_chunked(self, tips_df):
        # Read with a chunksize
        chunksize = 5
        for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
            df_reader = read_csv(
                "s3://pandas-test/tips.csv" + ext, chunksize=chunksize, compression=comp
            )
            assert df_reader.chunksize == chunksize
            for i_chunk in [0, 1, 2]:
                # Read a couple of chunks and make sure we see them
                # properly.
                df = df_reader.get_chunk()
                assert isinstance(df, DataFrame)
                assert not df.empty
                true_df = tips_df.iloc[chunksize * i_chunk : chunksize * (i_chunk + 1)]
                tm.assert_frame_equal(true_df, df)

    def test_parse_public_s3_bucket_chunked_python(self, tips_df):
        # Read with a chunksize using the Python parser
        chunksize = 5
        for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
            df_reader = read_csv(
                "s3://pandas-test/tips.csv" + ext,
                chunksize=chunksize,
                compression=comp,
                engine="python",
            )
            assert df_reader.chunksize == chunksize
            for i_chunk in [0, 1, 2]:
                # Read a couple of chunks and make sure we see them properly.
                df = df_reader.get_chunk()
                assert isinstance(df, DataFrame)
                assert not df.empty
                true_df = tips_df.iloc[chunksize * i_chunk : chunksize * (i_chunk + 1)]
                tm.assert_frame_equal(true_df, df)

    def test_parse_public_s3_bucket_python(self, tips_df):
        for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
            df = read_csv(
                "s3://pandas-test/tips.csv" + ext, engine="python", compression=comp
            )
            assert isinstance(df, DataFrame)
            assert not df.empty
            tm.assert_frame_equal(df, tips_df)

    def test_infer_s3_compression(self, tips_df):
        for ext in ["", ".gz", ".bz2"]:
            df = read_csv(
                "s3://pandas-test/tips.csv" + ext, engine="python", compression="infer"
            )
            assert isinstance(df, DataFrame)
            assert not df.empty
            tm.assert_frame_equal(df, tips_df)

    def test_parse_public_s3_bucket_nrows_python(self, tips_df):
        for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
            df = read_csv(
                "s3://pandas-test/tips.csv" + ext,
                engine="python",
                nrows=10,
                compression=comp,
            )
            assert isinstance(df, DataFrame)
            assert not df.empty
            tm.assert_frame_equal(tips_df.iloc[:10], df)

    def test_read_s3_fails(self):
        with pytest.raises(IOError):
            read_csv("s3://nyqpug/asdf.csv")

        # Receive a permission error when trying to read a private bucket.
        # It's irrelevant here that this isn't actually a table.
        with pytest.raises(IOError):
            read_csv("s3://cant_get_it/file.csv")

    def test_write_s3_csv_fails(self, tips_df):
        # GH 32486
        # Attempting to write to an invalid S3 path should raise
        import botocore

        # GH 34087
        # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html
        # Catch a ClientError since AWS Service Errors are defined dynamically
        error = (FileNotFoundError, botocore.exceptions.ClientError)

        with pytest.raises(error, match="The specified bucket does not exist"):
            tips_df.to_csv("s3://an_s3_bucket_data_doesnt_exit/not_real.csv")

    @td.skip_if_no("pyarrow")
    def test_write_s3_parquet_fails(self, tips_df):
        # GH 27679
        # Attempting to write to an invalid S3 path should raise
        import botocore

        # GH 34087
        # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html
        # Catch a ClientError since AWS Service Errors are defined dynamically
        error = (FileNotFoundError, botocore.exceptions.ClientError)

        with pytest.raises(error, match="The specified bucket does not exist"):
            tips_df.to_parquet("s3://an_s3_bucket_data_doesnt_exit/not_real.parquet")

    def test_read_csv_handles_boto_s3_object(self, s3_resource, tips_file):
        # see gh-16135

        s3_object = s3_resource.meta.client.get_object(
            Bucket="pandas-test", Key="tips.csv"
        )

        result = read_csv(BytesIO(s3_object["Body"].read()), encoding="utf8")
        assert isinstance(result, DataFrame)
        assert not result.empty

        expected = read_csv(tips_file)
        tm.assert_frame_equal(result, expected)

    def test_read_csv_chunked_download(self, s3_resource, caplog):
        # 8 MB, S3FS usees 5MB chunks
        import s3fs

        df = DataFrame(np.random.randn(100000, 4), columns=list("abcd"))
        str_buf = StringIO()

        df.to_csv(str_buf)

        buf = BytesIO(str_buf.getvalue().encode("utf-8"))

        s3_resource.Bucket("pandas-test").put_object(Key="large-file.csv", Body=buf)

        # Possibly some state leaking in between tests.
        # If we don't clear this cache, we saw `GetObject operation: Forbidden`.
        # Presumably the s3fs instance is being cached, with the directory listing
        # from *before* we add the large-file.csv in the pandas-test bucket.
        s3fs.S3FileSystem.clear_instance_cache()

        with caplog.at_level(logging.DEBUG, logger="s3fs"):
            read_csv("s3://pandas-test/large-file.csv", nrows=5)
            # log of fetch_range (start, stop)
            assert (0, 5505024) in (x.args[-2:] for x in caplog.records)

    def test_read_s3_with_hash_in_key(self, tips_df):
        # GH 25945
        result = read_csv("s3://pandas-test/tips#1.csv")
        tm.assert_frame_equal(tips_df, result)

    @td.skip_if_no("pyarrow")
    def test_read_feather_s3_file_path(self, feather_file):
        # GH 29055
        expected = read_feather(feather_file)
        res = read_feather("s3://pandas-test/simple_dataset.feather")
        tm.assert_frame_equal(expected, res)