Current File : //usr/local/lib64/python3.6/site-packages/pandas/core/ops/array_ops.py |
"""
Functions for arithmetic and comparison operations on NumPy arrays and
ExtensionArrays.
"""
from datetime import timedelta
from functools import partial
import operator
from typing import Any, Tuple
import warnings
import numpy as np
from pandas._libs import Timedelta, Timestamp, lib, ops as libops
from pandas._typing import ArrayLike
from pandas.core.dtypes.cast import (
construct_1d_object_array_from_listlike,
find_common_type,
maybe_upcast_putmask,
)
from pandas.core.dtypes.common import (
ensure_object,
is_bool_dtype,
is_integer_dtype,
is_list_like,
is_numeric_v_string_like,
is_object_dtype,
is_scalar,
)
from pandas.core.dtypes.generic import ABCExtensionArray, ABCIndex, ABCSeries
from pandas.core.dtypes.missing import isna, notna
from pandas.core.ops import missing
from pandas.core.ops.dispatch import should_extension_dispatch
from pandas.core.ops.invalid import invalid_comparison
from pandas.core.ops.roperator import rpow
def comp_method_OBJECT_ARRAY(op, x, y):
if isinstance(y, list):
y = construct_1d_object_array_from_listlike(y)
if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)):
# Note: these checks can be for ABCIndex and not ABCIndexClass
# because that is the only object-dtype class.
if not is_object_dtype(y.dtype):
y = y.astype(np.object_)
if isinstance(y, (ABCSeries, ABCIndex)):
y = y._values
if x.shape != y.shape:
raise ValueError("Shapes must match", x.shape, y.shape)
result = libops.vec_compare(x.ravel(), y.ravel(), op)
else:
result = libops.scalar_compare(x.ravel(), y, op)
return result.reshape(x.shape)
def masked_arith_op(x: np.ndarray, y, op):
"""
If the given arithmetic operation fails, attempt it again on
only the non-null elements of the input array(s).
Parameters
----------
x : np.ndarray
y : np.ndarray, Series, Index
op : binary operator
"""
# For Series `x` is 1D so ravel() is a no-op; calling it anyway makes
# the logic valid for both Series and DataFrame ops.
xrav = x.ravel()
assert isinstance(x, np.ndarray), type(x)
if isinstance(y, np.ndarray):
dtype = find_common_type([x.dtype, y.dtype])
result = np.empty(x.size, dtype=dtype)
if len(x) != len(y):
raise ValueError(x.shape, y.shape)
else:
ymask = notna(y)
# NB: ravel() is only safe since y is ndarray; for e.g. PeriodIndex
# we would get int64 dtype, see GH#19956
yrav = y.ravel()
mask = notna(xrav) & ymask.ravel()
# See GH#5284, GH#5035, GH#19448 for historical reference
if mask.any():
with np.errstate(all="ignore"):
result[mask] = op(xrav[mask], yrav[mask])
else:
if not is_scalar(y):
raise TypeError(
f"Cannot broadcast np.ndarray with operand of type { type(y) }"
)
# mask is only meaningful for x
result = np.empty(x.size, dtype=x.dtype)
mask = notna(xrav)
# 1 ** np.nan is 1. So we have to unmask those.
if op is pow:
mask = np.where(x == 1, False, mask)
elif op is rpow:
mask = np.where(y == 1, False, mask)
if mask.any():
with np.errstate(all="ignore"):
result[mask] = op(xrav[mask], y)
result, _ = maybe_upcast_putmask(result, ~mask, np.nan)
result = result.reshape(x.shape) # 2D compat
return result
def na_arithmetic_op(left, right, op, is_cmp: bool = False):
"""
Return the result of evaluating op on the passed in values.
If native types are not compatible, try coercion to object dtype.
Parameters
----------
left : np.ndarray
right : np.ndarray or scalar
is_cmp : bool, default False
If this a comparison operation.
Returns
-------
array-like
Raises
------
TypeError : invalid operation
"""
import pandas.core.computation.expressions as expressions
try:
result = expressions.evaluate(op, left, right)
except TypeError:
if is_cmp:
# numexpr failed on comparison op, e.g. ndarray[float] > datetime
# In this case we do not fall back to the masked op, as that
# will handle complex numbers incorrectly, see GH#32047
raise
result = masked_arith_op(left, right, op)
if is_cmp and (is_scalar(result) or result is NotImplemented):
# numpy returned a scalar instead of operating element-wise
# e.g. numeric array vs str
return invalid_comparison(left, right, op)
return missing.dispatch_fill_zeros(op, left, right, result)
def arithmetic_op(left: ArrayLike, right: Any, op):
"""
Evaluate an arithmetic operation `+`, `-`, `*`, `/`, `//`, `%`, `**`, ...
Parameters
----------
left : np.ndarray or ExtensionArray
right : object
Cannot be a DataFrame or Index. Series is *not* excluded.
op : {operator.add, operator.sub, ...}
Or one of the reversed variants from roperator.
Returns
-------
ndarray or ExtensionArray
Or a 2-tuple of these in the case of divmod or rdivmod.
"""
# NB: We assume that extract_array has already been called
# on `left` and `right`.
lvalues = maybe_upcast_datetimelike_array(left)
rvalues = maybe_upcast_datetimelike_array(right)
rvalues = maybe_upcast_for_op(rvalues, lvalues.shape)
if should_extension_dispatch(lvalues, rvalues) or isinstance(rvalues, Timedelta):
# Timedelta is included because numexpr will fail on it, see GH#31457
res_values = op(lvalues, rvalues)
else:
with np.errstate(all="ignore"):
res_values = na_arithmetic_op(lvalues, rvalues, op)
return res_values
def comparison_op(left: ArrayLike, right: Any, op) -> ArrayLike:
"""
Evaluate a comparison operation `=`, `!=`, `>=`, `>`, `<=`, or `<`.
Parameters
----------
left : np.ndarray or ExtensionArray
right : object
Cannot be a DataFrame, Series, or Index.
op : {operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le}
Returns
-------
ndarray or ExtensionArray
"""
# NB: We assume extract_array has already been called on left and right
lvalues = maybe_upcast_datetimelike_array(left)
rvalues = right
rvalues = lib.item_from_zerodim(rvalues)
if isinstance(rvalues, list):
# TODO: same for tuples?
rvalues = np.asarray(rvalues)
if isinstance(rvalues, (np.ndarray, ABCExtensionArray)):
# TODO: make this treatment consistent across ops and classes.
# We are not catching all listlikes here (e.g. frozenset, tuple)
# The ambiguous case is object-dtype. See GH#27803
if len(lvalues) != len(rvalues):
raise ValueError(
"Lengths must match to compare", lvalues.shape, rvalues.shape
)
if should_extension_dispatch(lvalues, rvalues):
# Call the method on lvalues
res_values = op(lvalues, rvalues)
elif is_scalar(rvalues) and isna(rvalues):
# numpy does not like comparisons vs None
if op is operator.ne:
res_values = np.ones(lvalues.shape, dtype=bool)
else:
res_values = np.zeros(lvalues.shape, dtype=bool)
elif is_numeric_v_string_like(lvalues, rvalues):
# GH#36377 going through the numexpr path would incorrectly raise
return invalid_comparison(lvalues, rvalues, op)
elif is_object_dtype(lvalues.dtype):
res_values = comp_method_OBJECT_ARRAY(op, lvalues, rvalues)
else:
with warnings.catch_warnings():
# suppress warnings from numpy about element-wise comparison
warnings.simplefilter("ignore", DeprecationWarning)
with np.errstate(all="ignore"):
res_values = na_arithmetic_op(lvalues, rvalues, op, is_cmp=True)
return res_values
def na_logical_op(x: np.ndarray, y, op):
try:
# For exposition, write:
# yarr = isinstance(y, np.ndarray)
# yint = is_integer(y) or (yarr and y.dtype.kind == "i")
# ybool = is_bool(y) or (yarr and y.dtype.kind == "b")
# xint = x.dtype.kind == "i"
# xbool = x.dtype.kind == "b"
# Then Cases where this goes through without raising include:
# (xint or xbool) and (yint or bool)
result = op(x, y)
except TypeError:
if isinstance(y, np.ndarray):
# bool-bool dtype operations should be OK, should not get here
assert not (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype))
x = ensure_object(x)
y = ensure_object(y)
result = libops.vec_binop(x.ravel(), y.ravel(), op)
else:
# let null fall thru
assert lib.is_scalar(y)
if not isna(y):
y = bool(y)
try:
result = libops.scalar_binop(x, y, op)
except (
TypeError,
ValueError,
AttributeError,
OverflowError,
NotImplementedError,
) as err:
typ = type(y).__name__
raise TypeError(
f"Cannot perform '{op.__name__}' with a dtyped [{x.dtype}] array "
f"and scalar of type [{typ}]"
) from err
return result.reshape(x.shape)
def logical_op(left: ArrayLike, right: Any, op) -> ArrayLike:
"""
Evaluate a logical operation `|`, `&`, or `^`.
Parameters
----------
left : np.ndarray or ExtensionArray
right : object
Cannot be a DataFrame, Series, or Index.
op : {operator.and_, operator.or_, operator.xor}
Or one of the reversed variants from roperator.
Returns
-------
ndarray or ExtensionArray
"""
fill_int = lambda x: x
def fill_bool(x, left=None):
# if `left` is specifically not-boolean, we do not cast to bool
if x.dtype.kind in ["c", "f", "O"]:
# dtypes that can hold NA
mask = isna(x)
if mask.any():
x = x.astype(object)
x[mask] = False
if left is None or is_bool_dtype(left.dtype):
x = x.astype(bool)
return x
is_self_int_dtype = is_integer_dtype(left.dtype)
right = lib.item_from_zerodim(right)
if is_list_like(right) and not hasattr(right, "dtype"):
# e.g. list, tuple
right = construct_1d_object_array_from_listlike(right)
# NB: We assume extract_array has already been called on left and right
lvalues = maybe_upcast_datetimelike_array(left)
rvalues = right
if should_extension_dispatch(lvalues, rvalues):
# Call the method on lvalues
res_values = op(lvalues, rvalues)
else:
if isinstance(rvalues, np.ndarray):
is_other_int_dtype = is_integer_dtype(rvalues.dtype)
rvalues = rvalues if is_other_int_dtype else fill_bool(rvalues, lvalues)
else:
# i.e. scalar
is_other_int_dtype = lib.is_integer(rvalues)
# For int vs int `^`, `|`, `&` are bitwise operators and return
# integer dtypes. Otherwise these are boolean ops
filler = fill_int if is_self_int_dtype and is_other_int_dtype else fill_bool
res_values = na_logical_op(lvalues, rvalues, op)
res_values = filler(res_values) # type: ignore
return res_values
def get_array_op(op):
"""
Return a binary array operation corresponding to the given operator op.
Parameters
----------
op : function
Binary operator from operator or roperator module.
Returns
-------
functools.partial
"""
if isinstance(op, partial):
# We get here via dispatch_to_series in DataFrame case
# TODO: avoid getting here
return op
op_name = op.__name__.strip("_").lstrip("r")
if op_name == "arith_op":
# Reached via DataFrame._combine_frame
return op
if op_name in {"eq", "ne", "lt", "le", "gt", "ge"}:
return partial(comparison_op, op=op)
elif op_name in {"and", "or", "xor", "rand", "ror", "rxor"}:
return partial(logical_op, op=op)
elif op_name in {
"add",
"sub",
"mul",
"truediv",
"floordiv",
"mod",
"divmod",
"pow",
}:
return partial(arithmetic_op, op=op)
else:
raise NotImplementedError(op_name)
def maybe_upcast_datetimelike_array(obj: ArrayLike) -> ArrayLike:
"""
If we have an ndarray that is either datetime64 or timedelta64, wrap in EA.
Parameters
----------
obj : ndarray or ExtensionArray
Returns
-------
ndarray or ExtensionArray
"""
if isinstance(obj, np.ndarray):
if obj.dtype.kind == "m":
from pandas.core.arrays import TimedeltaArray
return TimedeltaArray._from_sequence(obj)
if obj.dtype.kind == "M":
from pandas.core.arrays import DatetimeArray
return DatetimeArray._from_sequence(obj)
return obj
def maybe_upcast_for_op(obj, shape: Tuple[int, ...]):
"""
Cast non-pandas objects to pandas types to unify behavior of arithmetic
and comparison operations.
Parameters
----------
obj: object
shape : tuple[int]
Returns
-------
out : object
Notes
-----
Be careful to call this *after* determining the `name` attribute to be
attached to the result of the arithmetic operation.
"""
from pandas.core.arrays import DatetimeArray, TimedeltaArray
if type(obj) is timedelta:
# GH#22390 cast up to Timedelta to rely on Timedelta
# implementation; otherwise operation against numeric-dtype
# raises TypeError
return Timedelta(obj)
elif isinstance(obj, np.datetime64):
# GH#28080 numpy casts integer-dtype to datetime64 when doing
# array[int] + datetime64, which we do not allow
if isna(obj):
# Avoid possible ambiguities with pd.NaT
obj = obj.astype("datetime64[ns]")
right = np.broadcast_to(obj, shape)
return DatetimeArray(right)
return Timestamp(obj)
elif isinstance(obj, np.timedelta64):
if isna(obj):
# wrapping timedelta64("NaT") in Timedelta returns NaT,
# which would incorrectly be treated as a datetime-NaT, so
# we broadcast and wrap in a TimedeltaArray
obj = obj.astype("timedelta64[ns]")
right = np.broadcast_to(obj, shape)
return TimedeltaArray(right)
# In particular non-nanosecond timedelta64 needs to be cast to
# nanoseconds, or else we get undesired behavior like
# np.timedelta64(3, 'D') / 2 == np.timedelta64(1, 'D')
return Timedelta(obj)
elif isinstance(obj, np.ndarray) and obj.dtype.kind == "m":
# GH#22390 Unfortunately we need to special-case right-hand
# timedelta64 dtypes because numpy casts integer dtypes to
# timedelta64 when operating with timedelta64
return TimedeltaArray._from_sequence(obj)
return obj