Current File : //usr/local/lib64/python3.6/site-packages/pandas/core/arrays/_mixins.py
from typing import Any, Sequence, Tuple, TypeVar

import numpy as np

from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError
from pandas.util._decorators import cache_readonly

from pandas.core.algorithms import take, unique
from pandas.core.arrays.base import ExtensionArray

_T = TypeVar("_T", bound="NDArrayBackedExtensionArray")


class NDArrayBackedExtensionArray(ExtensionArray):
    """
    ExtensionArray that is backed by a single NumPy ndarray.
    """

    _ndarray: np.ndarray

    def _from_backing_data(self: _T, arr: np.ndarray) -> _T:
        """
        Construct a new ExtensionArray `new_array` with `arr` as its _ndarray.

        This should round-trip:
            self == self._from_backing_data(self._ndarray)
        """
        raise AbstractMethodError(self)

    # ------------------------------------------------------------------------

    def take(
        self: _T,
        indices: Sequence[int],
        allow_fill: bool = False,
        fill_value: Any = None,
    ) -> _T:
        if allow_fill:
            fill_value = self._validate_fill_value(fill_value)

        new_data = take(
            self._ndarray, indices, allow_fill=allow_fill, fill_value=fill_value,
        )
        return self._from_backing_data(new_data)

    def _validate_fill_value(self, fill_value):
        """
        If a fill_value is passed to `take` convert it to a representation
        suitable for self._ndarray, raising ValueError if this is not possible.

        Parameters
        ----------
        fill_value : object

        Returns
        -------
        fill_value : native representation

        Raises
        ------
        ValueError
        """
        raise AbstractMethodError(self)

    # ------------------------------------------------------------------------

    # TODO: make this a cache_readonly; for that to work we need to remove
    #  the _index_data kludge in libreduction
    @property
    def shape(self) -> Tuple[int, ...]:
        return self._ndarray.shape

    def __len__(self) -> int:
        return self.shape[0]

    @cache_readonly
    def ndim(self) -> int:
        return len(self.shape)

    @cache_readonly
    def size(self) -> int:
        return np.prod(self.shape)

    @cache_readonly
    def nbytes(self) -> int:
        return self._ndarray.nbytes

    def reshape(self: _T, *args, **kwargs) -> _T:
        new_data = self._ndarray.reshape(*args, **kwargs)
        return self._from_backing_data(new_data)

    def ravel(self: _T, *args, **kwargs) -> _T:
        new_data = self._ndarray.ravel(*args, **kwargs)
        return self._from_backing_data(new_data)

    @property
    def T(self: _T) -> _T:
        new_data = self._ndarray.T
        return self._from_backing_data(new_data)

    # ------------------------------------------------------------------------

    def copy(self: _T) -> _T:
        new_data = self._ndarray.copy()
        return self._from_backing_data(new_data)

    def repeat(self: _T, repeats, axis=None) -> _T:
        """
        Repeat elements of an array.

        See Also
        --------
        numpy.ndarray.repeat
        """
        nv.validate_repeat(tuple(), dict(axis=axis))
        new_data = self._ndarray.repeat(repeats, axis=axis)
        return self._from_backing_data(new_data)

    def unique(self: _T) -> _T:
        new_data = unique(self._ndarray)
        return self._from_backing_data(new_data)